What Scientific Research are Silicon Wafers Used For?

university wafer substrates

How fast Can Silicon Wafers be Delivered?

UniversityWafer, Inc is the leading silicon wafer distributor to universities and research centers internationally. We can delivery next day and if in Boston, same day. Just let us know how fast you need the wafers!

 Researcher Testimonial:

 "The (silicon) wafers have arrived today, and we really pleased with them! Thumbs up to your production crew!"

 Researcher from University of Exeter

Free Technical Assiatance on All Substrates!

What Silicon-Wafer-Diameters do you Have in Inventory

We have all diameters in inventory. We can also dice any wafer into a dimension or diameter that you need in small and large quantities. Belwo are just some examples of what we carry.

Ultra-thin Silicon 100mm P/B (100) 1-10 ohm-cm 25um 2um thin Silicon also available!

1" Undoped Silicon Wafers (100) >1,000 ohm-cm 250um DSP

2" P-type Boron (100) 1-10 ohm-cm 280um SSP

3" N-type Phosphorus (100) 0.01-0.02 ohm-cm 380um DSP

4" Silicon Wafer Undoped/Intrinsic (100) >20,000 ohm-cm 500um DSP

6" P/B (111) <1 ohm-cm 300um SSP

8" undoped (100) >5,000 ohm-cm 750um SSP

12" P/B (100) 10-20 ohm-cm DSP 850um

Thin Silicon Wafers

We have plenty of silicon wafers at a low price and small quantities of partial cassettes so you can buy less than 25 wafers and as few as one Si wafer.

Silicon Wafer Sale!

We carry a large selection of Silicon Wafers with the following specifications:

Thermal oxide wet and dry

Silicon nitride LPCVD and PECVD

Sputtered and Evaporated metals

We can custom make wafers in small quantities. We can dice them, thin them to 2um. We have undoped, low doped and highly doped Silicon substrates that are always in stock.

Typical Client Question regarding silicon wafers:

After looking at your online store, I think we might go with your cheapest silicon wafers, product ID 444. I am in a group that is working on a Senior Design Project to create a biobattery. We need a substrate to pattern with photo-lithography and subsequently deposit various precious metals on that will catalyze certain reactions and conduct electricity. If you have any advice on specific types of wafers we will need for such nano electronic devices I would be happy to know. Thanks.

We make nanomaterials in our lab and one approach is using electrical explosion of wires (EEW). We used one of Scott's old Si wafers (doped with B) and broke off a strip of Si that we attached to electrodes in our EEW apparatus. It worked nicely and we are looking to do the same thing with Ge (Germanium Wafer). We need a wafer that is less than 500 microns thick.

Fill out the form and receive an immediate quote. See bottom of page for recent Silicon Wafers specials.

How do Silicon Wafers make Computer Chips

What do Researchers Use our Silicon Wafers for?

Some clients use the following Si item #447 76.2mm and Si item #1196 100mm silicon wafers for the fabrication of microfluidic devices.

What 100mmm and 200mm silicon wafers are used by researchers

"...to do ini al tests for deep anisotropic etching of diffrac on gra ngs. We have to test different masking material and etch solu ons with these (silicon) wafers. Expected result will be part of a later PhD thesis. After the planned etching the wafers will be not further used and will be disposed.

Silicon Wafer Items Used

  • Si Item 2358 - 100mm P-type Boron doped <110> orientation 1-10 ohm-cm resistiivty 500 micron thick Double Side Polished (DSP) Prime Grade
  • Si Item #3468 - 200mm Any Type/Dopant <110> Any Res 1000um DSP Mech Grade

What Silicon Wafers are Used for Nanoparticle Formation

"As a (silicon) substrate for nanoparticle formation in ionic liquids. The nanoparticles are for fuel cell investigations."

  • Item# 2218 - Silicon 25.4mm P /B <100> ANY 400um SSP

What Silicon Wafer Spec is used for Thin Film Deposition?

  • Si Item#978 - 76.2mm P B <100> 1-10 380um SSP Prime Thin Film Deposition

What Silicon Wafers use in the day-to-day Scientific Research?

What Silicon Wafers are used for Nanoimprint Processes?

  • Si Item #783 - 100mm P/B(100) 1-10 ohm-cm 500um SSP Prime Grade
  • 150mm P<100> Any res 650+/-25 um SSP wafers with V notch Prime Grade
  • 200mm P <100> Any res 700-750 um SSP wafers with V notch Prime Grade

What Silicon Wafer Coatings are Available?

Thermal Oxide

Silicon (SIN) Nitride

What is Thin Film Deposition on Silicon Wafers

  • Sputtering
  • E-Beam Evaporation

What are Other Silicon-Wafer Services

What is a Silicon Material Safety Data Sheet (MSDS)

MSDS is just a standard confirmation sheet that show the user the materials properties, how the material should be handled and if it's dangerous.

Silicon Wafer Materails Safety Data Sheet


What Silicon Wafer Diameters are in Stock?

Waht Silicon Wafer Dopings are Available?

  • Boron doped
  • Gallium Doped
  • Antimony
  • Arsenic
  • Undoped also called intrinsic

What is the Thicknesses of  Ultra-Thinned Silicon Wafers?

  • 2 micron
  • 5 micron
  • 10 micron
  • 25 micron
  • 50 micron
  • 75 micron
  • 100 micron
  • 150 micron
  • 200 micron

Ultra-Thinned Silicon Wafers

What SOITEC SOI Wafers?

Why pay more for SOI wafers when you don't have to?

Soitec Silicon on Insulator Wafers

What are Wafers and How Much Does a Silicon Wafer Cost?

If you are looking for silicon wafers, then you've arrived at the right supplier! We have an large volume of substrates in stock. We don't suffer from the same silicon wafer shortages that plague the industry.


The price depends on many factors. Send us your specs and quantity for an immediate price quote!

Scroll right and left for our Customer FAQs Regarding Silicon Wafers! 

Fill out the form below for an immediate quote!


We have a large selection of Prime, Test and Mechanical Grade Silicon wafers 1" - 12" Silicon Wafers low doped and highly doped in stock and ready to ship. Examples full and partial silicon wafer cassettes include:


Buy Online and Save!

what are your silicon wafer services

What Is A Silicon Wafer?

It may not be intentional, but it is possible that most people encounter silicon wafers in their daily lives, or even use them. Most people who use devices such as computers and smartphones use them for personal use and use them without knowing it, according to a new study.


how do you slice a wafer from a silicon ingotSilicon is the most widely used element in the universe and is mainly used as a semiconductor in silicon wafer slice sawed off from ingottechnology and electronics. Silicon wafers are found in electronic devices that improve people's lives, and they are the material used to make semiconductors.

Most people have no idea that they will come across a real silicon wafer in their lifetime, but they must have experienced it before. This super-flat disc is refined to a mirror-like surface, but also consists of subtle surface irregularities, making it the flattest object in the world. There are also properties that are very similar to other flat objects such as glass, metal and even glass.

During the entire growth process, doping agents can be used to alter the purity of the silicon wafer depending on its manufacturing purpose. These impurities can alter the electronic properties of silicon, which are essential for a wide range of applications depending on the production purpose. In silicon manufacturing, various methods are used to count the number of different types of impurities such as silicon oxide, silicon nitride and thermal oxide.

These degenerate semiconductors can be used as conductors, as they are located in the extrinsic range, which is light and high - doping. They are considered degenerated or extrinsic, depending on whether or not the silicon wafer is added during doping. Silicon doping, which can be added during the growth process, includes aluminum, boron, nitrogen, indium and gallium.

What are Silicon Wafer Uses?

So you have questions about what silicon wafers are used for? And why are silicon wafer used at all? Silicon is the best and most widely used semiconductor, although other conductors are used for more specific applications. Silicon is an excellent option, because its electric current flows through silicon much faster than through any other material, such as copper. So what is a wafer? It's simply a slice of silicon that can be thinner than a piece of paper or as thick or thicker than a hockey puck!

how do you mean a microchip from a silicon waferSemiconductors such as silicon wafers can be used to make chips, microchips and electronic devices.
Due to the uniqueness of the electric current in silicon wafers, semiconductors are used to produce ICs (integrated circuits). Ics are the basis for a wide range of electronic devices such as chips, microchips and microprocessors.

Simply put, an integrated circuit is a network of a variety of electronic elements that are brought together to perform a specific function. The silicon semiconductor wafer is the main element in integrated circuits and is surrounded by a layer of semiconductors such as copper, nickel, copper oxide, silicon and other semiconductor materials.

A silicone wafer is a thin disk of semiconductor material that serves as a substrate for a microelectronic device mounted on it. Silicon is the key platform for semiconductors and devices and is used in a wide range of applications that people can only dream of. Although it can be easy to relate silicon wafers to other types of electronic devices such as computers, televisions, mobile phones, and other electronic devices, they are much closer than you might think.

The production of silicon wafers depends on a number of factors, such as the quality of the material, the size (diameter) and the computing power available to the manufacturer.

What is Silicon Wafer surface flatness?

We have Ultra-Flat Silicon with the following spec


Prime Silicon Wafers 100mm P-type /Boron doped <1-0-0> 490-510 micron 0.005-.020 ohm-cm Semi Std Double Side Polished


Total Thickness Variation (TTV) <1 um. These are great for making SOI or MEMS!

What is the roughness value (rms) of your Silicon Wafers?

The majority of our Prime Grade wafers have a roughness value Ra<5Å . We can provide roughness

what is the standard roughness spec of a silicon wafer

What is the definition of silicon wafers?

A Si wafer, or substrate, or silicon is grown in a tube from a seed into a long ingot that is then sliced into various thicknesses used in electronics for the fabrication of integrated circuits and in photovoltaics. The wafer serves as the substrate for microelectronic devices built in and over the wafer and undergoes many microfabrication process steps such as doping or ion implantation, etching, deposition of various materials, and photolithographic patterning. Finally the individual microcircuits are separated (dicing) and packaged.

Can you deposit Platinum (Pt) on silicon wafers?

Yes! We sell Platinised and thin films of almost all the metals! Just let us know the specs and quantity for an immediate quote!

What is the Minimum Quantity Silicon Wafer That You Can Purchase?

UniversityWafer, Inc. sells as few as one Silicon wafer. We sell in individual wafer carrier.

what is the minimum quantity silicon wafer you can purchase?

How do you clean Si 100 wafer before silicon dioxide is formed for bump production?

The RCA clean is a standard set of wafer cleaning steps which need to be performed before high-temperature processing steps (oxidation, diffusion, CVD) of silicon wafers in semiconductor manufacturing.

Werner Kern developed the basic procedure in 1965 while working for RCA, the Radio Corporation of America.[1][2][3] It involves the following chemical processes performed in sequence:

Removal of the organic contaminants (organic clean + particle clean)

Removal of thin oxide layer (oxide strip, optional)

Removal of ionic contamination (ionic clean)

Can you resize Silicon Wafer diameters from 200mm to 100mm?

Yes! We can laser down the wafer so you could get two 100mm from one 200mm wafers including flats!

how do you laser dice silicon wafers

Below is a wafer lasered. Send us your diagram and specs for an immediate quote.


What is Silicon-Wafer Reclaim?

It's when you have a wafer that has thin films or oxide etc on them and we strip and clean them so the wafers can be reused.

Often companies that want to save money or protect their intellectual property will reclaim their wafers.

Si Wafer Quote!

Where to buy Silicon Wafers?

Which keyword did you use to find us? Tell us and you'll receive a discount on your order! For more easy to access information visit our partner.


  • wafer
  • wafers
  • silicon wafer
  • semiconductor wafer
  • what is wafers
  • what is wafers
  • silicon wafers
  • wafer definition
  • what is a wafer
  • wafer semiconductor
  • semiconductors wafer
  • cpu wafer
  • wafer meaning
  • silicon boule
  • what are wafers
  • chip wafer
  • chip wafer
  • wafer chips
  • wafer chips
  • wafers computer
  • wafer electronics
  • define wafer
  • wafer manufacturing
  • si wafer
  • 300mm wafer
  • silicon substrate
  • wafer silicon
  • wafer silicon
  • what is wafer
  • silicone wafer
  • silicone wafers
  • how are silicon wafers made
  • silicon wafer thickness
  • silicon wafer manufacturing
  • computer wafers
  • microchip wafer
  • semiconductor wafers
  • wafwr
  • wafwr
  • wafer chip
  • wafer chip

What Substrate Material Should I use for Coating Research?

UniversityWafer, Inc. can help you find the right wafer for all your research.


Clients have used the following Si Wafer for the coating research:



We also manufacture thin slice of pure silicon with electronic properties that ranges the full spectrum of specs and diameters from 25.4mm to 300mm with diced substrates available as well.

What is Float Zone Silicon?

We have a large selection of float zone silicon (also called undoped silicon wafers or intrinsic) in stock, buy online!

Ask Us About Boron Phosphide Semiconductors

We can customize boron phosphide for your research of high-power, high-frequency devices as well as laser diodes.

What is Vicinal Silicon?

Vicinal silicon crystallography is the plane the position of which varies very little from that of a fundamental plane of the form.

Researcher requested a the following quote:

We are interested in acquiring vicinal Si (100) wafers with a six-degree miscut angle. We would prefer 2" wafers but any larger size is acceptable. We do not have any other doping/thickness requirements. How quickly would we be able to get them if we were to order and what is your pricing for these?

Our Quote:

Si Wafer
2", 500um, P type, <100> off to <110> 6 degree SSP

Pricing depends on quantity.

What Silicon Wafers Used in Photolithography

Researchers have used the following substrates with great success!

Si Item #809 - 100mm N/P <100> 1-10 ohm-cm 500um SSP Prime

What Silicon Wafers Used to Make Microfluidics Molds

Si Item #783 - 100mm P/B <100> 1-10 ohm-cm 500um SSP Prime Grade

What Silicon Wafer is Used in Heterojunction Device Research?

Lab researchers have used the following double side polished silicon wafers to fabricate heterojunction devices.


Si Item #775
100mm P/B <100> 1-10 ohm-cm 500um DSP


What are Silicon Wafers Used For?

Silicon wafers are made from a material called silicon. They are the main ingredient in semiconductors, which are used in all kinds of electronic devices. Because of their high density, silicon is the second most abundant element in the universe, and their versatility and cost-effectiveness make them an invaluable resource in technology. However, what are some of the applications of silicon? Let's take a look at some of the most common uses.

One of the most common uses of silicon is in the production of semiconductors, which are used to create electronic devices. In addition to semiconductors, silicon wafers can be used for many other applications. In the semiconductor industry, these materials are used to make tools for the manufacturing of electronic components. A dielectric etching system uses a plasma to remove conductive components. This process is known as reactive ion etching, and it involves bombarding the surface of a silicon wafer with charged particles.

The most common application of silicon wafers is in the fabrication of semiconductors. Aside from electronics, silicon is the primary ingredient in integrated circuits, which are electronic gadgets. A silicon wafer is a thin slice of this material that acts as a substrate for microelectronic devices. Examples of silicon wafers include smartphones, computers, and tire pressure sensors. Besides electronics, they are also used in solar cells, which absorb photons from the sun and convert the energy into electricity.

Apart from semiconductors, silicon wafers are used in many different types of industries. These include the manufacture of ultrapure silicon for semiconductor manufacturing tools. It is also used in many other fields, such as electronic equipment. These applications are endless, and it is possible to discover some new uses for silicon. In addition to their countless uses, there are several other benefits. Aside from being used in manufacturing tools, silicon is used to produce parts for a range of other equipment.

Apart from semiconductors, silicon wafers are also used to develop chip and microchips. These are the electrical devices that command actions. Because of their stability, silicon wafers are used to build electronic appliances. Another important application of silicon is in calibration. A silicon wafer is a thin slice of silicon, and is used for a variety of applications. It can also be reused for other uses.

When it comes to making semiconductors, silicon is used in a variety of ways. A single silicon wafer is used to make a semiconductor, but the entire process of making a silicon chip is expensive. It's worth it, though, to have a pristine silicon wafer. It's worth the investment to create a quality product. So what are some of the most common applications of these microchips?

The first application of silicon wafers is in semiconductor manufacturing. The semiconductors are the building blocks of electronic products. These products are a combination of different components, and a silicon wafer can be used in a wide variety of applications. A transistor is made up of several layers. A silicon wafer is a thin sheet of silicon that has two layers. During the process of manufacturing, the two layers of silicon are bonded together. Then, these two layers are separated by a chemical-mechanical-planarization polishing.

The most common use of silicon wafers is in electronic devices. They are the basic material for electronic devices. A silicon wafer is an excellent example of this. Its crystalline structure is the most pure material ever created, and is perfect for most applications. The purity of a silicon crystal is important for this purpose. It's the basis of semiconductor technology. It's also used in other industries that depend on electronics.

The semiconductors used in these devices are the main element in modern electronics. They are the basis of all modern devices and are used in everything from smart phones to computers. While other semiconductor materials have been tested, silicon has proved to be the most reliable choice. It's also used in tires. As a result, these semiconductors are widely used in tire pressure sensors. They are also used in solar cells. Since they absorb light, they generate electricity.

How do Silicon Anodes Speed Up Electric Vehicle (EV) Charging

New anode technology that uses a thin film of porous pure silicon could lead to less-expensive lithium-ion batteries for electric vehicles that charge in just a few minutes and provide over 200 mile range. The technology could help increase an EV’s range by 30 percent or more.  

Li15Si4 is the new material that combines silicon with lithium.  UniversityWafer, Inc. can help researchers source the material for their lab.

silicon anode for electric vehicle range increase and fast charging

Silicon The Element Defined in Detail

However, the latest results confuse what we know about the element and the individual elements on its surface. To be sure, researchers should know all about silicon by now, but they don't, at least not yet.

Silicon was first identified in 1824 by Swedish chemist Jons Jacob Berzelius, but it has been worshipped by a number of other chemists and physicists over the last two centuries, from the late 19th century to the early 20th century.

Interest in silicon increased in the late 1970s and early 1980s, when silicon transistors were developed to replace vacuum tubes in electronic devices such as computers, televisions, and mobile phones. It has since become the preferred material for electronic devices because it can make small circuits and integrate them into small chips.

Silicon ushered in the so-called silicon revolution, which has changed society and permeated every corner of daily life. When we speak of semiconductor technology, we are talking about silicon crystals, which are normally cut from larger crystals to form thin wafers.

This has enabled enormous computing capacity, which has reshaped the world by processing huge amounts of data and continuously accessing valuable information. While crystalline silicon has long been studied, the surface of the thin silicon layer has played an important role in the development of computer chips, as it is a key component in many of its applications. There is no doubt that the basic properties of the silicon surface are still unknown and widely discussed.

He joined IBM's Thomas J. Watson Laboratory to help develop and apply new surface inspection techniques. PhD student, has been working with metal surfaces since his doctorate and continues to work well with them and understand them well, as well as facilitating the development of new techniques.

At the time, I was an outsider in silicon surface research, so Mr. Cary asked me why I wasn't interested in silicon surfaces.

When the opportunity came up to do a new kind of measurement that no one had done before, I saw an opportunity and thought, "Why not?

The new attempt to study silicon surfaces involves understanding Si (111), which has been widely studied since 1957 but whose surface structure has never been understood. refers to the fact that the crystal is halved and a flat plane of atoms remains on the surface. To measure this, a surface must be cleaned and heated to remove dirt, with its atoms arranged like marbles in different configurations.

The annealed Si (111) surfaces exhibit a diffraction pattern of 7x7, which is derived from the unusual atomic structure they possess. This pattern fascinates everyone who looks at it, and it has undoubtedly become one of the most widely studied semiconductor surfaces, if one excludes none. The latest discovery, which will be discussed later in this article, is based on initial studies of Si11 surfaces.

The new temperature-dependent measurements of 7x7 show many interesting electronic transitions that were not observed before. Normally, if a surface is a semiconductor, it would be expected to become an insulator at low temperatures, but more importantly, it would be insulated at lower temperatures (about 50 K). In 1983, a theoretical model of the 2x1 structure was proposed and established, but the structure and chemical composition of a 7X7 surface was much more complex and elusive. In the 1980s, a new method of studying silicon surfaces - the Si (111) diffraction pattern - was developed, which allowed us to study other properties of this pattern. What people knew at the time was that if you broke a crystalline silicon rod in 111 directions, you would get a simple diffraction pattern of 2X1, and if the 2X2 surface were heated, the surface would form the 7Z7 pattern and be very stable at high temperatures.

In general, such behaviour has a specific temperature dependence, but in 7x7 we found another temperature dependency. The surface is neither semiconducting nor metallic, so it is a very unusual effect to create electrons on the surface of the metal isolate, depending on how the electrons are aligned.

This was proposed in 1985 to accommodate diffraction experiments, but the problem was that the calculated structure was always metallic, which contradicted the experiments. The 1985 7x7 structure, which was confirmed as the lowest energy and most stable structure, was revealed in the 1990s, when calculations were mature and could be performed to predict the complex structures of the 7X7 surface.

This became the unsolved paradox of the silicon surface and the subject of a so-called scanning tunnelling microscope, for which he and other IBM colleagues received the Nobel Prize in Physics in Zurich in 1986. The paradoxes of 7x7 were rediscovered in the 1990s, this time by Bob Kowalski and colleagues at IBM, using a new device designed to perform electron spectroscopy on silicon surfaces at atomic resolution.

The high stability of the STM design made it possible to see the electron clouds in different places on different surfaces and atoms and to dissolve their energy into atomic solvents. However, the theory did not predict the surface conditions observed at atomic resolution in 1983 and 1986. Initially, experimental measurements and their interpretation were a valid form of simplified calculations. Several researchers confirmed the new electronic state at the time, but again, no one had a clear explanation.

In the insulation of floors, the paradox of the 7x7 surface became the basis for the development of a new type of high-temperature, low-energy electronic state of silicon.

I left the lab in 1993 to pursue other interests and retired in 2005, completely in the paradise of my surroundings in Florida. I # ve never played so many rounds of golf in a year, caught so many fish in a single day, or played and played so long, at a time when the game of golf seemed to be getting worse, not better.

That's when I decided to write to my grandchildren about why I became a scientist and what it means to be a scientist. Even then, I remembered all that and was kind of confused about what I was ever going to be.

After two years of studying the results of the past and consulting the literature, I discovered two also more recent paradoxes and why they arose. To my surprise, despite many new studies, they have never been resolved, and there are many structures proposed over the years that would not fit either. These discoveries were made by attempting a reverse engineering process, taking into account certain features that an alternative structure might take into account. They are all based on many experiments, which today tell us much more than theoretical calculations and the state of the art.

To my surprise, I found a new structure that takes into account these unusual paradoxes, but not in the same way as the previous ones.

The trick is that in a very complex system, there can be different arrangements of atoms that look like structures from one angle but are connected by icicles stacked upright on a tray. When you look at it from the side, you see that you are actually standing on the cone, and when you look down, it is like a ball. At close range, each rung can have a different shape, such as a triangle, a circle or a cone with different shapes and sizes.

The original structure in 1985 was proposed as a two-dimensional (2D) structure, similar to that in the atom, but the details of the new structure gave it distinctly different properties. The electrons behave very differently when they are in this new 2d frame, and there are now bonds. In the 2000s, everyone in the scientific community still believed that the original 1985 structure was correct. Now, however, it has been proposed again, this time with a different structure.

In 2008, many of the researchers working on the surface switched to studying graphene, which is best known for its use as a surface for the production of high-performance electronics. Graphene is one of two materials based on carbon, but whose atoms are arranged in a hexagonal structure.

As a result, graphene has a number of properties, the most striking being a very high electron mobility, which is important for electrical devices. The discovery of graphene was awarded the Nobel Prize in Physics in 2010 for its role in the development of high-performance electronics and its use in materials science.

For some time now, there have been efforts to adapt other 2D structures for electrical devices. However, graphene formation on substrates has proved problematic as its formation in the substrate is crucial for highly integrated applications such as electronic devices and electronic components.

The role of silver surfaces is called into question, however, as the 2D character of silicon atoms in silver must be preserved, especially as the silicon layers become thicker. Researchers at the University of California, San Diego School of Engineering have discovered in a promising new electronic material that silicon can be used to form a 2d structure similar to graphene. They succeeded in this by cultivating a monolayer of silicon on a silver surface. The monolayer of 2D silicon grown on silver has several properties that correspond to those of graphene, such as a high surface area and strong electrical conductivity, which silicon requires as an ideal material for use in electronic devices and electronic components.