There are many reason to purchase substrates from UniversityWafer, Inc. Below are just some of the reasons to buy SiC substrates from us.
Silicon Carbide (SiC) High crystal quality wafers for all your demanding power electronics. Silicon carbide (SiC) power device manufacturers demand the highest quality wafers to meet the performance and reliability required in advanced power electronics systems. 4H SiC Prime Grade wafers mean it's of the highest product quality and reliability that work great for research and production.
Silicon Carbide (SiC) devices work better and more efficiently than silicon and other substrates when electonic devices need to handle high currents, high voltages and higher temperatures. SiC is the future of hybrid and electric vehicles, industrial applications, and generation and distribution of renewable power.
Our 100 mm SiC Wafers offer device researchers and manufacturers with consistent, high quality specification to help develop high-performance power devices. Our high quality SiC wafers wafers are produced from 4H, 4° off-axis, n+ SiC ingots manufactured using physical vapor transport (PVT) growth techniques as well as artificial intelligence. Advanced wafer production techniques are used
to convert silicon carbide ingots into SiC wafers thus ensuring a quality device that works consistantly and reliably.
This SiC substrate grading structure sets a higher
standard for specifying tolerances. At the highest quality tier, materials feature defect
densities as low as MPD <= 0.1 cm-2, TSD<= 500 cm-2 and BPD <=1,000 cm-2.
Prime Grade offers three product tiers of 100 mm SiC substrates of increasingly tighter tolerances:
SiC Grades |
Benefits |
Applications |
---|---|---|
Prime Std | Guaranteed MPD tolerances. Balances performance and cost for electronic components with low to medium current ratings. |
Schottky and junction barrier Schottky diodes |
Prime Select | More stringent tolerances for MPD current ratings and TSD. Allows for manufacturing with mid-range current ratings. |
Pin diodes and switches |
Prime Ultra | Extremely low MPD, TSD and BPD tolerances and tightened wafer resistivity. Ensures product quality and improves cost efficiency in manufacturing high current devices. |
High current and voltage MOSFETs, JFETs, IGBTs, BJTs, and pin diodes with large die areas |
We have a large selection of SiC substrates 4H and 6H epi ready. You can buy as few as one wafer in diameters ranging from 5mm x 5mm up to 150mm.
Many SiC Wafers are in stock and ready to ship.
Specs |
Standard |
Select |
Ultra |
---|---|---|---|
Diameter (mm) | 99.7 - 100 | ||
Thickness (um) | 330 - 370 | ||
Primary Flat Length (mm) | 31.50 - 34 | ||
Bow, um | +/-20um | ||
Warp, um | <=30um | ||
TTV, um | <=5um | ||
SBIR, um | <=2um | ||
Foreign polytypes, % | 0 | ||
Visible scratches, mm | <=15um | ||
Resistivity, ohm-cm | 0.014 - 0.024 | 0.015 - 0.023 | 0.016 - 0.022 |
Total usable area(1), % | >=95 | >= 98 | >= 99 |
Dislocation density(2), cm-2 | |||
EPD (mean) | <=12,000 | <= 10,000 | <= 8,000 |
TED (mean) | <= 9,000 | <=8,000 | <= 6,000 |
TSD (mean) | <= 1,000 | <= 800 | <= 500 |
BPD (mean) | <= 2,000 | <= 1,500 | <= 1,000 |
MPD, cm-2 | <= 0.5 | <= 0.2 | <= 0.1 |
Total Silicon Carbide usable area calculation includes Candela CS20 measurements for surface defects and micropipes to determine an accurate percentage usable area calculation.” Inspection area on a 2 x 2 mm grid with 3 mm EE.
Dislocation density is determined by KOH etching using a 65-point radial measurement technique on 1 wafer per ingot.