A-Plane Sapphire (Al2O3) Windows in Stock

university wafer substrates

A-Plane Sapphire Wafers

We have a large selection of A-plane wafers in stock. Please email us the specs that you need.

Get Your Quote FAST!


What Is A-Plane Sapphire?

The plane that is perpendicular to the A-axis, containing the C-axis. A-plane Sapphire orientations are widely used in optoelectronic applications.

How do Researchers Use A-Plane Sapphire Substrates?

Chemical Vapor Deposition (CVD) has been used by researchers to grow AlGaN epi-layers on a-plane sapphire. And to grow MoS2 to make more efficient electronic devices.

Reseachers have used a-plane sapphire to grow Polycrystalline Diamond Thin Film using the CVD process.

Ion Beam Milling of Single-Crystal Sapphire on A-Plane Sapphire

The removal rate of material (MRR) is the speed at which material is removed from the surface. The surface roughness (Sa) is how rough the surface is after the material is removed. The MRR of A-plane sapphire is slightly higher than that of C-plane and M-plane sapphire. The Sa of A-plane sapphire after FIB treatment is the smallest among the three different crystal orientations. These results imply that A-plane sapphire allows easier material removal during FIB milling compared with C-plane and M-plane sapphires. Moreover, the surface quality of A-plane sapphire after FIB milling is better than that of C-plane and M-plane sapphires. The theoretical calculation results show that the removal energy of aluminum ions and oxygen ions per square nanometer on the outermost surface of A-plane sapphire is the smallest. This also implies that material is more easily removed from the surface of A-plane sapphire than the surface of C-plane and M-plane sapphires by FIB milling.